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Confidence Envelopes for Monotonic Functions:
Principles, Derivations, and Examples.

I. Curve Envelopes

In seminal work published in 1929, Working and Hotelling developed the formulae for the
extrapolation of the concept of the confidence interval to regression lines, to provide a
“"confidence envelope™ enclosing the population line with probability 1 - @, Such an
envelope for a regression fuhction F ( x; 0 ) in which 6 is a parameter vector has also
been‘_called a confidence band (by Miller, 1968). It is defined by functions L (x; 6 )and U
(x; ¢ ) (illustrated in Figure 1) satisfying the relationship

PUGGE 2 P8 ) 2L(x:8), vx}=1- a

The envelope problem for linear models has been treated extensively by Working and
Hotelling (1929), Roy (1957), Miller (1966), and others; but all use the intimate
interrelationships of linear models with muitinormal error to develop computational
formulae for U(x; 6 ) and L ( x; © ). This paper describes an algorithm for computing
confidence envelopes satisfying the above equation for any function F ( x; 6 ) which is
monotonic in its parameters. This technique will be applied to linear regression, to obtain
the classical result; then illustrations will be provided using nonlinear regression.

It is assumed that there are parameter estimates _é: for which the sampling distribution
is multivariate normal with mean _a_ and covariance matrix I . Only multi-parameter
curves will be considered; for one-parameter curves, which are conditionally monotonic
(in the sense defined below) the problem is quite simple. In the multi-parameter situation,
a central ( 1 - o )-confidence region for the parameters, called the ( 1 - @ )-Highest
Density Region (HDR) by Novick and Jackson (1977), is easy to describe: it is defined by
the ellipsoid containing 100 ( 1 - o) 9% of the posterior density, where all of the points
within the ellipsoid have higher density than all of the points outside the ellipsoid. The
two-dimensional case is illustrated in Figure 2.

The HDR for the general multivariate normal density is defined most easily in terms of
that for the "standard" muitinormal distributions 2 ~ N (Q,1). The HDR for the
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Figure 1. A monotonic curve with a hypothetical confidence envelope.
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Figure 2. Ellipse showing highest density region.
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k-dimensional standard multinormal is defined by the hypersphere (or cirele, for the two-
dimensional llustration in Pigure 3) with redius equal to VX' 1- o) LK) wheee

x? (1- o) k) is the upper 100 (1 - a) % eritical value for the X? dhtribution with k
degrees of freedom. Since any multinormal variables may be orthonormalized by the
transforniz = C -1 (8 - 9 ), general multinormal 6* may be defined as

8% = Cz* + § (1)

(in which C is the Cholesky factor of I such that Z = CC'). Thus, the HDR for the
general multinormal in Figure 2 is an ellipsoid defined by equation (1) and the condition

2% 2% = xz(l _ a)(k)'
Sinee the radius of this hypersphere (or circle in the two dimensions of Figure 3) is fixed,

the points z* may be defined conveniently in hyperspherical (or circular) coordinates as
functions exclusively of the angle ¢ .

Each point in the parameter space defines a fitted line; the lines defined by the parameter
values within the HDR in Figure 2 are the lines which must lie within the (1 - ©)-
envelope in Figure 1. Therefore, the problem of computing the boundaries of the (1-0)
envelope becomes that of computing, for each value of x, the value of L ( x; 6 ) which is

the minimum F (x; © ) forany © in the HDR, and U ( x; é ) which is the maximum
F(x; 6 ) in the HDR,

If the function F ( x; 8 ) is "eonditionally monotonic" in its parameters, where
"conditional monotonicity” means that for parameter &,

!‘(me_il ej,‘i, > F(x;0, + clejh)
or

F(x;ei |9 L <P(x®, + 6]0

for all positive §, then the minimum and maximum values of F ( x; 8 ) for the £ within
the HDR are always on the boundary of the HDR. Thus, computing L ( x; © 6 ) and

: S
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Figure 3.  Circle illustrating the meaning of phi,

for the two dimensional case.
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U(x; _Q) is a matter of locating the points ¢ * on the ellipsoid in Pigure 2 which
minimize and maximize F ( x; 6 ) for values of x. The points g+ are all specified by
angles in z-space and the transformation in equation (1).

Thus, to compute values of the funetion L ( x; § ) for a series of values of x, and to make
plots as in Pigure 1, one minimizes for each value Xo
Flxys8) =F (x5 GIH(E5X* (4.4 )(K)K G, 27}

=F( X ), for short,

in which

and
_Z_=H(2; xz(l'a )(k))

represent the conversion of  circular or  hyperspherical coordinates
(¢°»r =w( 1-aq )(k )linto cartesian coordinates z. Minimization is in ¢-space,
with dimensionality k - 1. Consequently, for a two-dimensional problem, one solves for
the scalar angle ¢ in Figure 3 which gives the values of 6 * in Figure 2 which minimize
F ( Xy 8 ) in Figure 1; that is thf value of L ( x; é ). After repeating this process
frequent}y enough to plot L ( X,; 6 ), one maximizes F ( Xy 6 ) over o* to obtain
U(xyi 8 )

The Linear Case
The derivation of the envelope for the linear case is more complex than the usual
arguments (as in Miller, 1966); however, generalization of this argument to the nonlinear

case is straightforward. One specifies that

F(x;9)= 8 x+ 6 (2)

10
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is a linear function in which 0 = 8,, 6, are the slope and intercept parameters; for
convenience, the mean of the (fixed) x-values is zero and their variance is 1. One assumes
that g represents the maximum likelihood estimate (MLE) for 6 from a large sample of n
observations. The sampling distribution for 8 is approximately N (6 , £ ) in which

I = (o¥/n)1

is the negative inverse expected value of the matrix of second derivatives of the
loglikelihood, and o 2 is the error variance. Thus,

C = (06/ M1

L (x; 8 ) is obtained by minimizing (2) for each value of x over valuesof © so that
6 = cz* + 8 (3)

in which the z* satisfy the condition

- 2
ZY 2% = X ay(2) (4)

The value of h = ‘\[X (95 ) (2)is -r 2.45, to give a 95%-envelope. The condition
specified by (4) is met by z* obtained as

z*' = [hecos ¢ hsin ¢] (5)

The lower bound of the 95%-envelope L ( x; © ) is given by the minimum of the linear
function (2) with the constraint that 6 satisfies (3) in which z* satisfies (5). The
minimization is in ¢-space.

The required minimum is obtained where the derivative of (2) with respect to ¢ is zero;
that is

3F /3¢ = x368,/3¢ + 80,/9¢9 = 0 (6)

1R
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Since

36/3¢ = C3z/9¢
and

327 /3¢ = h{-sin ¢ cos ¢},
it follows that

380°/9¢ = (ho/~W) [-sin ¢ cos ¢]

OF/3¢ = (ho/ 4A)[-x sin ¢ + cos ¢ ) (7)
The partial derivative (6) is zero when (7) is zero; (7) is zero when

1/ x=sin ¢/ cos ¢ =tan ¢.

¢ =tan"1(1/ x) ®)

N M B ACHI N L E A N LI S RS

Solutions of ¢ between O° and 180° give maximum; solutions between 180° and 360°
give minimum. Such a closed-form result is simpler than those to be obtained in
subsequent sections on nonlinear models. To plot L ( x; 6 ) compute ¢ using (8), z* as in

(5), e as in (3) and F from (2) and plot the corresponding hyperbola,

Or, to obtain the customary form given by Working and Hotelling (1929) and Miller (1968),

note that for ¢ satisfying (8)

Xxcosd +sind =+ [1 + x2] /2

plus for maximum and negative for minimum.

(9)

12
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(Geometric proof of (9) is obvious using any triangle satisfying (8).) Using the identity in
(9) and substituting (3) in (2) (keeping the terms separate), one obtains
L(x;é) = 8,x + 8, -ho/ W [14x2)1/2 (10)
where the first two terms are from § in (3) and the last term is the product of Cz* and x.
This is the usual form for the lower bound, as in Miller (1966, p. 111), with h (the root of
the large-sample x?) replacing Y2F and x standardized. Thus, for the linear case, the
trigonometry implied by ¢ is computationally optional; it serves only if it is desirable to
know the parameter values associated with some point on the lower bound. The
trigonometry will be required in the nonlinear case, however. The upper bound simply
reverses the negative sign in (10).

A Simple Nonlinear Example

In the case of logistic regression of a binary response on some fixed x, F ( x; 0 ) is the
logistic function

F(x; 8)=1/ (1+exp(-u),
u=90:(x-62)

in which 8, is the logit-slope and 0, is the location parameter, estimated so that the
sampling distribution of_a_ iSN(6,2%=CC'). F(x; 6 )isa minimum wherever u is
minimized, and F ( x; 0) is maximized wherever u is a maximum. To minimize
(maximize) F, minimize (maxlmnze) u. Only minimization will be considered to locate
L ( x; e ); to maximize for U ( x; 6 0 ), reverse the signs. Minimize u with respect to ¢.

The minimum of u for a particular X, is obtained where the derivative

du/d¢ = (x-02)090,/9¢ - 0,902/3¢ = O. (11)

Since

|l >

6 =cz +
99/39¢ = C3z/3¢,

13
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B+
YV - 2'= fheos ¢ hsiné }, and
;;laf_ 3g'/3 ¢ =1[(-hsiné hecos ¢]
in which h ={x’ (1-a)(2) the derivative in (11) represents a straightforward
- computation. Unlke the linear example, there is no closed-form solution in this case, but
2y with the second derivative
(9
= 32u/3¢2 = (x - 02)32 9, /39¢2 - 2361/0¢ 36,/3¢ - 6,3202/3¢3
-
- the function u is easily minimized (over ¢ ) by Newton-Raphson for a set of values of x,
A ~ and the results may be plottedas L (x; 0).
. . A More Complex Example
» e '
In a more complex sort of logistic regression sometimes used in mental test theory, a
h - lower asymptote 0 ,is also estimated,
-2 e P(x;0 )= 03+(1-03) {1/ [1+exp(-u)1}
h_ | = 65+(1-03)P,and
L.‘.
u=0; (x- 62)
R
and, for notational convenience,

Q=1-P
where P indicates the probability of a correct response (Lord, 1980).

. A;lin, assume that 6 has been estimated so that the sampling density is
[ N(u £ =CC'). 8ince there are three parameters in this model, minimization and
- maximization of F (x_; 0 ) must be with respect to a two-dimensional angle ¢, and all of
F. the derivatives are more complex. Nevertheless, L ( x ; e) is obtained at the point at

which 3F/3¢ = 0 , where
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AF/3¢ = (1 - 63) PQ du/d + Q363/3¢

and
Ju/dg = (u - 02)90,/3¢ - 61362/3¢ .
As before,
8 =-cz + §
%0
[36/3¢) - = C [32/3¢)
and since

Zz=[ hsing, cos¢, hsind, sind¢s, hecosd2 ]

it follows that

-h sin ¢,sin¢, hsin ¢, cosd, 0
[92/3¢1° =
hecos ¢, cosd, hcos ¢, sin ¢, -hsin ¢,

in all of which h= -\/x’ (3)

(1-0)
With the matrix of second derivatives (which is entirely too big and complex to reproduce
here), the function F ( x; ¢) can be minimiged over ¢ to give L ( x; 8 ), and
maximized to give U ( X3 8 ). The minimization problem is fairly ill-conditioned for
some values X, 50 both a conditioned Newton-Raphson algorithm and multiple starting
values must be used to locate the minimum.

Plotting L ( x; 6 ) can be accomplished using the following system. Start at the
leftmost X, to be plotted, and successively (iteratively) compute L ( x; 6 ) as the

15




3 - minimum F ( x; ¢ ) for each value of X, to be plotted, always using the value of ¢ for the
. previous (left-adjacent) x, as the starting value. When the rightmost x, is reached,

reverse the procedure and re-compute each point, starting from ¢ for the right-adjacent
o+ In the flattest regions, the results for the two passes sometimes differ. Since the
processhis one of minimization, to get L ( X3 8)), retain the lower value. The values for

X

;"' U (x,;6 )are computed with the same algorithm, with the signs reversed.
IL N-line Plots
f_ While plots of the ( 1 - o )-envelope define a ( 1 - o )-confidence interval for a fitted
.;Tj'jL curve, they do not graphically display the density of curves within the envelope. For that
b ' purpose, there are N-line plots, which are plots which (approximately) fill the (1 - a )-
- ‘ envelope with curves, in proportions roughly corresponding to their likelihood. N-line
p“ plots consist of plots of N lines drawn from parameters randomly drawn from the sampling
distribution for the parameters. N-line plots are easiest to describe by a series of
a5 examples.
- b pl
p.— A One-Parameter Example: 25-Line Plots
q '.—~_'.'_ An extremely simple variety of logistic regression is sometimes used in mental test
i theory; it makes use of a model of the form
- _
r b
i F(x; 6)=1/ (1+exp(~u) ],
u=sx-60
in which © is a location parameter, and the only estimated parameter in the model. Since
this one-parameter function is monotonic in its parameter, the computation of the
( 1 - o )-envelope for the fitted curve is trivial, as mentioned above: if © is the estimate
of 9 , with a standard error of o, then the upper boundary for the 95%-envelope is

U(x; 0)=F (x;0 - 1.96 0); and the analogous lower boundary for the envelope is
L( x;(; )=F( x;g + 1,96 o). A typical 95% envelope for such a function is plotted in
Figure 4, with the modal (fitted) curve in the center of the envelope. The envelope plot
describes, with its boundaries, the central 95% confidence interval for the fitted curve.

16
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Figure 4.

Probability O

One-parameter model; a=1.0, b=0.0, ¢=0.0, n=100, 95% confidence
envelope. In this and in subsequent figures the letters a, b, and

¢ indicate the parameters of a logistic item response model (Lord,
1980), and so correspond to the vector 0 discussed in the text.
Parameter a is related to the steepness of the curve at its steepest
point, b indicates the position of the curve along the X axis, and ¢
is the lower asymptote.
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But can the density for the fitted curve be ™filled in" a bit? Figure 5, following the
assumption that the density for 0 is N ( 5, 0? ), shows plots of the curves corresponding
to 25 random deviates from a normal density with mean 8 and variance 3°, Note that
such randomly sampled curves are dense near the curve corresponding to 6 and fill the
95%-envelope in Figure 4. Thus, a 25-line plot is a "filled-out" envelope plot, even though
the density of lines is less near the edges.

The envelope described by the upper and lower extreme curves of the 25-line plot is, in
expectation, precisely equal to the true 95% envelope. This is beca4se the distance
between the upper and lower boundarjes of the 95%-envelope plot is determined by
plotting F ( x; 8 +1.96 oc)andF (x; 6 -1.960 ) i.e., plotting F for two values of ©.
centered on 8 » which have a range of 2 (1,96 ) 6. The random deviates which yield the
25-line plot are also centered on 0, and the expected value of their range is 2 ( 1,96 ) ©.
(The expected value of the range of a sample of N = 25 standard normal deviates is
3.93 ° 2(1.96) (Pearson and Hartley, 1956).) Thus, the boundaries of the 95%-envelope
and the expected values of the highest and lowest curves of a 25-line plot are in the same
place. The 25-line plot gives a clearer graphic description of the envelope for the curve.

A Two-Parameter Example: 85-Line Plots
A two-parameter logistic regression, in which
F(x;6)=1/ (l+exp(-u)l,and
u= 61(x-9;)

provides more interesting N-line plots, but they are more costly to make. The vector fis
assumed estimated with sampling density N ( 6 , » ). If the upper and lower extreme
curves of the N-line plot are to equal (in expectation) the boundaries of the 95%-envelope,
the appropriate N-line plot should have as its (squared) range on uny line through the
density (shown in Figure 2), the Mahalanobis distance given by

Ay = 2
(6 -9) X (1-a) (2) .

That is, on any line through the two-dimensional space in Figure 2, the expected range of
the projections of the random deviates of the N-line plot should be the same as the

18
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Figure 5. One-parameter model; a=1.0, b=0.0,
¢=0.0, n=100, a 25-line plot.
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. distance between the two boundaries of the HDR on that line. Every value of x has as its
h upper and lower ( 1 - & )-envelope boundaries the parameters at the intersections of the
HDR boundary with some line in 8 -space. So the requirement that the expected value of
the range of the projections of the random sample on any such line be equal to the HDR
: boundary difference gives the desired result: the expected location of the upper and
_ ” lower N-line eurves are along the upper and lower ( 1 - @ )-envelope boundaries.

For the two-dimensional case, N (regrettably) is 85. This is determined by noting that the
0 -space of Figure 2 is a projection of the _Z-space of Figure 3, and the 95%HDR
boundary of Figure 3 has radius equal to-\ﬁ(2 (.95) (2)= ‘\[6_0- = 2.45. Thus one makes
N-line plots from the two-space by sampling standard normal deviates in the orthonormal
space (from the density in Figure 3), transforming them to have the 8 -density in Figure 2,
and plotting the resulting curves. So the expected value of the range of the standard
normal z's sampled must be 2 ( 2.45 ), to give the N-line plot the required breadth.
Pearson and Hartley's (1956) Table 27 indicates that the required sample size is N = 85.
Figure 6 shows an illustrative 85-line plot; Figure 7 is the corresponding 95%-envelope
plot. Note that the 85-line plot shows clearly how the odd shape of the 95%-envelope
arises from the distribution of curves. Flat curves make w U(x; © )onthe le{t and

L (x; 0 ) on the right, whereas steep curves make up L (x; 0 ) on the left and U (x; 8 ) on
the right.

Eighty-five lines can be tedious to plot. Twenty-five line plots are equivalent (in

expectation) to only 85%-envelopes, but, as Figure 8 shows, give much of the detail
available in 85-line plots.

Lots-of-Line Plots

By an argument similar to that of the preceding section, N-line plots for three-parameter
models require N = 235 to match (in expectation) 95%-envelope plots. Figure 9 shows a
23%-line plot for the three-parameter logistic model described above, and Figure 10 is the
95%-envelope plot. Two hundred thirty-five lines take a plotter a long time. (The width
of a 25-line plot is equivalent (in expectation) to a 72%-envelope.)
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Figure 6.  Two-parameter model; a=1.0, b=0.0,
¢=0.0, n=100, an 85-line plot.
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Figure 7.  Two-puraineter model; a=1.0, b=0.0,

¢=0.0, n=100, 95% confidence envelope.
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Figurc 8.  Two-parameter model; a=1.0, b=0.0,
¢=0.0, n=100, a 25-line plot.
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Figure 9. Three-parameter model; a=1.5, b=1.0,
¢=0.1, n=1,000, 235-line plot.
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Figure 10. Three-parameter model; a=1.5, b=1.0,
c=0.1, n=1,000, 95% cnvelopec.

25

te T . . Y PN 3 P i PP S S S S PP . O |
R I I T S T e PN




T .
At PG OO AP IMCIG N LA DRATOIL L Fll Wil i

RS
5

Al

)
-

] .‘
Y
-
—
.

(3

N-line plots become cumbersome as dimensionality increases. Some altarnatives to 93%-
envelope-equivalent N-line plots may be suggested. The simplest is to combine the
(1 - a )-envelope itself (eompdted as in Section I) with a small number of randomly
sampled curves to give some idea about the structure. Another possibility is to abandon
the dependence of N-line plots on extreme-value statistics. One could plot a small
number of lines, and then, for each value of x, estimate the standard deviation of
F(x; 8) That estimate could be multiplied by the factor appropriate to the
dimensionality of the problem (2.45 for two, 2.8 for three, and so on) and added to (and
subtracted from) the modal curve to give projections of the ( 1 - a )-envelope. The
standard deviation could be estimated robustly, to depart indeed from the dependence on
extreme-value statistics in the methods above.

On the other hand, one could (less robustly, but more quickly) depend more on extreme
value statistics, using half-N-line plots. To make a half-N-line plot, plot the number of
randomly sampled curves needed to have the expected range equal to half the_desired
range (0.98 for one dimension, 1.23 for two, 1.4 for three, and so on; N's = 4, 6, 8. . .). The
data analyst then must visually multiply the width of the plot by two to see the desired
result, which, with such small N's, would be unreliable. Still, it would be quick.

Conclusion
The methodology derived and illustrated here provides an operational connection between
the stochastic variation in the parameter space and the observed variation in the function
space. This explicit connection provides a mechanism for the establishment of confidence
bounds around non-linear functions. Such bounds were not available with previous
techniques.

Earlier work (Thissen & Wainer, 1982) showed that the standard errors of item parameters
for commonly used models were so large as to render use of the models impractical in
some cases even with moderately large sample sizes, The techniques herein developed
can be used to determine the consequences of these large standard errors on the
estimation of the overall response function. Such measures are relevant for many
practical applications of item response theory (such as computer adaptive testing).

Recent investigations (Lord and Stocking, personal communication) have shown that the
response surface being explored for the three-parameter logistic function boundaries is
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poorly behaved, with local extrema being encountered more often than seldom.
Consequently the bounds based on the methods of this paper may be too narrow. This
limitation is not too serious, for one typically finds that the error bounds are often too
broad for the delicate decisions required. Thus if the bounds are perhaps narrower than
they should be and are still too broad, this limitation is unlikely to be critical. We have
not found these same local extrema problems with the one or two parameter models.
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